To:

Mr. President of the Argentine Republic, Javier Milei

Mr. Chief of the Ministries' Cabinet, Nicolás Posse Mr. President of CONICET, Dr. Daniel Salamone Honorable Senators and Deputies of the National Congress

We are writing to you out of respect and deep concern. We watch as the Argentinian system of science and technology approaches a dangerous precipice, and despair at the consequences that this situation could have for both the Argentine people and the world. We see with concern the elimination of the Ministry of Science and Technology, the dismissal of administrative employees of CONICET and other institutes throughout the country, and the early termination of many contracts next month. We fear that Argentina is giving up on its scientists and its students of science. We worry that the dramatic devaluation of the budgets for CONICET and the National Universities reflects not only a dramatic devaluation of Argentinian science but also a devaluation of the Argentinian people and the future of Argentina.

As international scientists, many of us have witnessed the transformative contributions of Argentinian science. Were it not for Argentinian science and scientists, the causes of lung cancer and diabetes would have remained a mystery for decades longer. Were it not for Argentinian science and scientists, we would lack the knowledge and technology that allows a country with modest rainfall to feed both its own people and much of the world. Were it not for Argentinian science and scientists, we would lack key elements of our understanding of the workings of the Universe from the workings of a simple virus to the workings of an atom. As citizens of the world, we benefit from this legacy. We benefit from our still imperfect but sometimes life-saving ability to diagnose and treat cancer. We benefit from the advances in agriculture and from the foods produced by the Argentinian landscape. We see the many remarkable advances that have come to Argentinia through the history and tradition of Argentinian science and technology. Where would Argentina – and the world -- be without this rich and important history?

Devaluing and/or cancelling Argentinian science now would be a grave mistake. The world has many problems, and any modern economy like that of Argentina must be able both to generate new technologies focused on local problems and apply technologies generated by others in a new local context to solve local problems. We believe in the ideal that countries investing in new science will share their technologies and their benefits, but we would be naive not to understand that any country's relying solely on this community spirit will quickly lose its economic independence. Some issues, opportunities, and solutions are global, and perhaps relying on the knowledge and efforts of others can work in those cases. But many issues, opportunities, and solutions are local, regional, or national, or local, and there should be no expectation that investments and investors from other nations will provide the knowledge and resources need to address such issues. Without an infrastructure for science a country descends into helplessness and vulnerability, neither developing its own technology to move forward nor training the individuals or developing the infrastructure needed to the scientific and technological knowledge of others to regional, national, and local problems. Where would such a situation leave Argentina?

We write with the perspective that Argentina has a remarkable scientific foundation on which to build if the will is there. Argentina is the only country in the

region that has developed its own Covid-19 vaccine, built and launched communication satellites, and designed and built next-generation nuclear reactors that not only have been exported but that will generate a domestic supply of radioisotopes for crucial medical use. A new proton-therapy laboratory, unique in the Southern Hemisphere, is soon to be inaugurated. A multinational project led by Argentinian scientists of the National Commission of Atomic Energy (CNEA) has installed the powerful QUBIC radio telescope at an altitude of 5,000 meters in the Puna, in Salta. This telescope will explore the first milliseconds of the universe immediately after the Big Bang. Argentina ranks 10th in the world for the number of biotechnology companies, a striking achievement that promises great advances in medicine and agriculture. Using genetic engineering, a publicly funded group has developed successful genetic variants of wheat that are resistant to drought, thus expanding the cultivation frontiers of essential crops. Scientists of Argentina excel in many areas, including geology, paleontology, biochemistry, molecular biology, immunology, ecology, physics, archaeology and environmental, atmospheric and social studies.

All these advances have been the consequence of governmental support for basic research. Economic and social progress in modern societies, and the creation of wealth from a country's natural resources are tightly linked to strong public investment in science and technology.

For these reasons, we respectfully urge you to restore the budgets from the restrictions recently imposed on the all-important science and technology sector of your country. Freezing research programs and decreasing the number of graduate trainees and young investigators will cause the destruction of a system that took many years to build, and that would take many, many more to rebuild.

Sincerely,

68 Nobel Laureates

Name	Category	Prize Year
Thomas R. Cech	Chemistry	1989
Martin Chalfie	Chemistry	2008
Aaron Ciechanover	Chemistry	2004
Walter Gilbert	Chemistry	1980
Richard Henderson	Chemistry	2017
Avram Hershko	Chemistry	2004
Roald Hoffmann	Chemistry	1981
Brian K. Kobilka	Chemistry	2012
Roger D. Kornberg	Chemistry	2006
Yuan T. Lee	Chemistry	1986
Robert J. Lefkowitz	Chemistry	2012
Jean-Marie Lehn	Chemistry	1987
Tomas Lindahl	Chemistry	2015
Roderick MacKinnon	Chemistry	2003
Paul L. Modrich	Chemistry	2015
Jean-Pierre Sauvage	Chemistry	2016
Richard R. Schrock	Chemistry	2005

o' II E III II	61	1005
Sir John E. Walker	Chemistry	1997
Arieh Warshel	Chemistry	2013
Sir Gregory P. Winter	Chemistry	2018
Kurt Wuthrich	Chemistry	2002
Finn E. Kydland	Economics	2004
Harvey J. Alter	Medicine	2020
Werner Arber	Medicine	1978
Francoise Barre-Sinoussi		2008
Elizabeth H. Blackburn	Medicine	2009
Andrew Z. Fire	Medicine	2006
Jules A. Hoffmann	Medicine	2011
Tasuku Honjo	Medicine	2018
H. Robert Horvitz	Medicine	2002
Sir Michael Houghton	Medicine	2020
Tim Hunt	Medicine	2001
Louis J. Ignarro	Medicine	1998
William G. Kaelin Jr.	Medicine	2019
Barry J. Marshall	Medicine	2005
Craig C. Mello	Medicine	2006
Edvard Moser	Medicine	2014
May-Britt Moser	Medicine	2014
Sir Paul M. Nurse	Medicine	2001
Stanley B. Prusiner	Medicine	1997
Sir Peter J. Ratcliffe	Medicine	2019
Charles M. Rice	Medicine	2020
Sir Richard J. Roberts	Medicine	1993
Michael Rosbash	Medicine	2017
Phillip A. Sharp	Medicine	1993
Susumu Tonegawa	Medicine	1987
Harold E. Varmus	Medicine	1989
Torsten N. Wiesel	Medicine	1981
Barry Clark Barish	Physics	2017
Steven Chu	Physics	1997
Albert Fert	Physics	2007
Andre Geim	Physics	2010
Sheldon Glashow	Physics	1979
David J. Gross	Physics	2004
John L. Hall	Physics	2005
Serge Haroche	Physics	2012
Takaaki Kajita	Physics	2015
Ferenc Krausz	Physics	2023
Anthony J. Leggett	Physics	2003
Michel Mayor	Physics	2019
Konstantin Novoselov	Physics	2010
Giorgio Parisi	Physics	2021
Roger Penrose	Physics	2020
William D. Phillips	Physics	1997
H. David Politzer	Physics	2004
	-	

Physics	2018
Physics	2017
Physics	2012
	Physics